2,818 research outputs found

    Efficient and Secure Algorithms for GLV-Based Scalar Multiplication and their Implementation on GLV-GLS Curves (Extended Version)

    Get PDF
    We propose efficient algorithms and formulas that improve the performance of side-channel protected elliptic curve computations with special focus on scalar multiplication exploiting the Gallant-Lambert-Vanstone (CRYPTO 2001) and Galbraith-Lin-Scott (EUROCRYPT 2009) methods. Firstly, by adapting Feng et al.\u27s recoding to the GLV setting, we derive new regular algorithms for variable-base scalar multiplication that offer protection against simple side-channel and timing attacks. Secondly, we propose an efficient, side-channel protected algorithm for fixed-base scalar multiplication which combines Feng et al.\u27s recoding with Lim-Lee\u27s comb method. Thirdly, we propose an efficient technique that interleaves ARM and NEON-based multiprecision operations over an extension field to improve performance of GLS curves on modern ARM processors. Finally, we showcase the efficiency of the proposed techniques by implementing a state-of-the-art GLV-GLS curve in twisted Edwards form defined over GF(p^2), which supports a four dimensional decomposition of the scalar and is fully protected against timing attacks. Analysis and performance results are reported for modern x64 and ARM processors. For instance, we compute a variable-base scalar multiplication in 89,000 and 244,000 cycles on an Intel Ivy Bridge and an ARM Cortex-A15 processor (respect.); using a precomputed table of 6KB, we compute a fixed-base scalar multiplication in 49,000 and 116,000 cycles (respect.); and using a precomputed table of 3KB, we compute a double scalar multiplication in 115,000 and 285,000 cycles (respect.). The proposed techniques represent an important improvement of the state-of-the-art performance of elliptic curve computations, and allow us to set new speed records in several modern processors. The techniques also reduce the cost of adding protection against timing attacks in the computation of GLV-based variable-base scalar multiplication to below 10%

    Uso de drogas entre crianças e adolescentes em situação de rua: o que ajuda?

    Get PDF
    The aim of this study was to investigate factors associated to frequent and heavy drug use among street children and adolescents aged 10 to 18 years. A sample of 2,807 street children and adolescents from the 27 Brazilian state capital cities was analyzed. A World Health Organization questionnaire for non-students was adapted for use in Brazil. Data analysis was performed using logistic regression and decision tree models. Factors inversely associated with frequent and heavy drug use were: being age nine to 11 years (OR = 0.1); school attendance (OR = 0.3); daily time (one to five hours) spent on the streets (OR = 0.3 and 0.4); not sleeping on the streets (OR = 0.4); being on the streets for less than one year (OR = 0.4); maintenance of some family bonds (OR = 0.5); presence on the streets of a family member (OR = 0.6); not suffering domestic violence (OR = 0.6); being female (OR = 0.8). All of these variables were significant at the p < 0.05 level. The findings suggest that being younger, having family bonds and engagement in school are important protective factors that affect drug use among this population and should be considered in the formulation of public policies.O objetivo do estudo foi verificar fatores associados ao uso frequente e pesado de drogas entre adolescentes em situação de rua no Brasil. Estudo transversal com amostra representativa nacional de 2.807 crianças e adolescentes (10-18 anos). Foi usado um questionário da Organização Mundial da Saúde adaptado para o Brasil e análise dos dados, modelo de regressão logística. Fatores inversamente associados ao uso frequente e pesado de drogas: faixa etária entre 9-11 anos (OR = 0,1); frequentar escola (OR = 0,3); permanecer entre 1 e 5 horas na rua (OR = 0,3 e 0,4); não dormir na rua (OR = 0,4); estar na rua há menos de um ano (OR = 0,4); manter algum vínculo familiar (OR = 0,5); permanecer na rua com algum membro da família (OR = 0,6); não ter sofrido violência doméstica (OR = 0,6); gênero feminino (OR = 0,8). Todas essas variáveis apresentaram p < 0,05. Os achados sugerem que ser mais jovem, ficar menos tempo na rua e manter vínculos com escola e família são importantes fatores de proteção para essa população quanto ao uso frequente e pesado de drogas. Esses são fatores importantes na formulação de políticas públicas para essa população.Universidade Federal de São Paulo (UNIFESP) Departamento de PsicobiologiaUniversidade Federal de São Paulo (UNIFESP) Departamento de Medicina PreventivaUniversidade Federal do Rio Grande Instituto de Ciências Humanas e da InformaçãoUniversidade Federal do Rio Grande do Sul Instituto de PsicologiaUNIFESP, Depto. de PsicobiologiaUNIFESP, Depto. de Medicina PreventivaSciEL

    Growth of Pure Zinc-Blende GaAs(P) Core-Shell Nanowires with Highly Regular Morphology

    Get PDF
    The growth of self-catalyzed core–shell nanowires (NWs) is investigated systematically using GaAs(P) NWs. The defects in the core NW are found to be detrimental for the shell growth. These defects are effectively eliminated by introducing beryllium (Be) doping during the NW core growth and hence forming Be–Ga alloy droplets that can effectively suppress the WZ nucleation and facilitate the droplet consumption. Shells with pure zinc-blende crystal quality and highly regular morphology are successfully grown on the defect-free NW cores and demonstrated an enhancement of one order of magnitude for room-temperature emission compared to that of the defective shells. These results provide useful information on guiding the growth of high-quality shell, which can greatly enhance the NW device performance

    Engineering conductive protein films through nanoscale self-assembly and gold nanoparticles doping

    Full text link
    Protein-based materials are usually considered as insulators, although conductivity has been recently shown in proteins. This fact opens the door to develop new biocompatible conductive materials. While there are emerging efforts in this area, there is an open challenge related to the limited conductivity of protein-based systems. This work shows a novel approach to tune the charge transport properties of protein-based materials by using electron-dense AuNPs. Two strategies are combined in a unique way to generate the conductive solid films: (1) the controlled self-assembly of a protein building block; (2) the templating of AuNPs by the engineered building block. This bottom-up approach allows controlling the structure of the films and the distribution of the AuNPs within, leading to enhanced conductivity. This work illustrates a promising strategy for the development of effective hybrid protein-based bioelectrical materialsThis work was partially supported by the European Research Council ERC-CoG-648071-ProNANO, ERC-PoC-841063-NIMM, Agencia Estatal de Investigación, Spain (PID2019- 111649RB-I00; and MAT2017-88693-R), and the Basque Government (Elkartek KK-2017/00008), E.L-M thanks the Spanish Ministry of Science and Innovation for the FPI grant (BES-2017-079646). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency – Grant No. MDM-2017-0720 (CIC biomaGUNE) and SEV-2016-0686 (IMDEA Nanociencia

    Essential and checkpoint functions of budding yeast ATM and ATR during meiotic prophase are facilitated by differential phosphorylation of a meiotic adaptor protein, Hop1

    Get PDF
    A hallmark of the conserved ATM/ATR signalling is its ability to mediate a wide range of functions utilizing only a limited number of adaptors and effector kinases. During meiosis, Tel1 and Mec1, the budding yeast ATM and ATR, respectively, rely on a meiotic adaptor protein Hop1, a 53BP1/Rad9 functional analog, and its associated kinase Mek1, a CHK2/Rad53-paralog, to mediate multiple functions: control of the formation and repair of programmed meiotic DNA double strand breaks, enforcement of inter-homolog bias, regulation of meiotic progression, and implementation of checkpoint responses. Here, we present evidence that the multi-functionality of the Tel1/Mec1-to-Hop1/Mek1 signalling depends on stepwise activation of Mek1 that is mediated by Tel1/Mec1 phosphorylation of two specific residues within Hop1: phosphorylation at the threonine 318 (T318) ensures the transient basal level Mek1 activation required for viable spore formation during unperturbed meiosis. Phosphorylation at the serine 298 (S298) promotes stable Hop1-Mek1 interaction on chromosomes following the initial phospho-T318 mediated Mek1 recruitment. In the absence of Dmc1, the phospho-S298 also promotes Mek1 hyper-activation necessary for implementing meiotic checkpoint arrest. Taking these observations together, we propose that the Hop1 phospho-T318 and phospho-S298 constitute key components of the Tel1/Mec1- based meiotic recombination surveillance (MRS) network and facilitate effective coupling of meiotic recombination and progression during both unperturbed and challenged meiosis

    Omega-3 fatty acids attenuate cardiovascular effects of short-term exposure to ambient air pollution

    Get PDF
    Exposure to air pollution is associated with elevated cardiovascular risk. Evidence shows that omega-3 polyunsaturated fatty acids (omega-3 PUFA) may attenuate the adverse cardiovascular effects of exposure to fine particulate matter (PM2.5). However, it is unclear whether habitual dietary intake of omega-3 PUFA protects against the cardiovascular effects of short-term exposure to low-level ambient air pollution in healthy participants. In the present study, sixty-two adults with low or high dietary omega-3 PUFA intake were enrolled. Blood lipids, markers of vascular inflammation, coagulation and fibrinolysis, and heart rate variability (HRV) and repolarization were repeatedly assessed in 5 sessions separated by at least 7 days. This study was carried out in the Research Triangle area of North Carolina, USA between October 2016 and September 2019. Daily PM2.5 and maximum 8-h ozone (O3) concentrations were obtained from nearby air quality monitoring stations. Linear mixed-effects models were used to assess the associations between air pollutant concentrations and cardiovascular responses stratified by the omega-3 intake levels

    Long-Term Stability and Optoelectronic Performance Enhancement of InAsP Nanowires with an Ultrathin InP Passivation Layer

    Get PDF
    The influence of nanowire (NW) surface states increases rapidly with the reduction of diameter and hence severely degrades the optoelectronic performance of narrow-diameter NWs. Surface passivation is therefore critical, but it is challenging to achieve long-term effective passivation without significantly affecting other qualities. Here, we demonstrate that an ultrathin InP passivation layer of 2-3 nm can effectively solve these challenges. For InAsP nanowires with small diameters of 30-40 nm, the ultrathin passivation layer reduces the surface recombination velocity by at least 70% and increases the charge carrier lifetime by a factor of 3. These improvements are maintained even after storing the samples in ambient atmosphere for over 3 years. This passivation also greatly improves the performance thermal tolerance of these thin NWs and extends their operating temperature from <150 K to room temperature. This study provides a new route toward high-performance room-temperature narrow-diameter NW devices with long-term stability

    Self-Catalyzed AlGaAs Nanowires and AlGaAs/GaAs Nanowire-Quantum Dots on Si Substrates

    Get PDF
    [Image: see text] Self-catalyzed AlGaAs nanowires (NWs) and NWs with a GaAs quantum dot (QD) were monolithically grown on Si(111) substrates via solid-source molecular beam epitaxy. This growth technique is advantageous in comparison to the previously employed Au-catalyzed approach, as it removes Au contamination issues and renders the structures compatible with complementary metal–oxide–semiconductor (CMOS) technology applications. Structural studies reveal the self-formation of an Al-rich AlGaAs shell, thicker at the NW base and thinning towards the tip, with the opposite behavior observed for the NW core. Wide alloy fluctuations in the shell region are also noticed. AlGaAs NW structures with nominal Al contents of 10, 20, and 30% have strong room temperature photoluminescence, with emission in the range of 1.50–1.72 eV. Individual NWs with an embedded 4.9 nm-thick GaAs region exhibit clear QD behavior, with spatially localized emission, both exciton and biexciton recombination lines, and an exciton line width of 490 μeV at low temperature. Our results demonstrate the properties and behavior of the AlGaAs NWs and AlGaAs/GaAs NWQDs grown via the self-catalyzed approach for the first time and exhibit their potential for a range of novel applications, including nanolasers and single-photon sources
    • …
    corecore